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Abstract

Computed tomography (CT) imaging is an essential tool in various clinical diagnoses and 

radiotherapy treatment planning. Since CT image intensities are directly related to positron 

emission tomography (PET) attenuation coefficients, they are indispensable for attenuation 

correction (AC) of the PET images. However, due to the relatively high dose of radiation exposure 

in CT scan, it is advised to limit the acquisition of CT images. In addition, in the new PET and 

magnetic resonance (MR) imaging scanner, only MR images are available, which are 

unfortunately not directly applicable to AC. These issues greatly motivate the development of 
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methods for reliable estimate of CT image from its corresponding MR image of the same subject. 

In this paper, we propose a learning-based method to tackle this challenging problem. Specifically, 

we first partition a given MR image into a set of patches. Then, for each patch, we use the 

structured random forest to directly predict a CT patch as a structured output, where a new 

ensemble model is also used to ensure the robust prediction. Image features are innovatively 

crafted to achieve multi-level sensitivity, with spatial information integrated through only rigid-

body alignment to help avoiding the error-prone inter-subject deformable registration. Moreover, 

we use an auto-context model to iteratively refine the prediction. Finally, we combine all of the 

predicted CT patches to obtain the final prediction for the given MR image. We demonstrate the 

efficacy of our method on two datasets: human brain and prostate images. Experimental results 

show that our method can accurately predict CT images in various scenarios, even for the images 

undergoing large shape variation, and also outperforms two state-of-the-art methods.

Index Terms

CT Prediction; PET Attenuation Correction; Dose Planning; Random Forest; Auto-context

I. Introduction

Computed tomography (CT) imaging is widely used in various medical practices, e.g., for 

detecting infarction, tumors, calcifications, etc. Besides, CT images are also indispensable 

for attenuation correction (AC) of positron emission tomography (PET) images [1] in the 

PET/CT system. AC is a process of deriving attenuation map from the CT image to correct 

the corresponding PET image, based on the radiation-attenuation properties of tissues 

revealed by the attenuation map.

However, the use of CT scan is advised to be limited, considering the risk of radiation 

exposure. For example, it has been shown that as many as 0.4% of cancers in the US are due 

to CT scanning performed in the past, and this number may increase to as high as 1.5 to 2% 

in the future [2]. Besides, as an emerging imaging tool, the recent PET and magnetic 

resonance imaging (MRI) system replaces CT by MRI. However, it is intrinsically hard to 

predict attenuation coefficients from MR images, since the MRI signals of individual voxels 

are related to proton density, not the electron density information that is required for AC. For 

example, using most standard MRI sequences, both air and compact bone generate very low 

signals, whereas their attenuation coefficients are highly different, as shown in Fig. 1.

Hence, there is a crucial need for predicting a CT image from an MR image. The existing 

works can be roughly classified into the following four categories:

• Tissue segmentation based methods. The basic idea is to first segment an MR 

image into different tissue classes, and then assign each class with a known 

attenuation property. However, this type of methods may fail due to the existence of 

some ambiguous tissue classes, such as air and bone. In particular, Zaidi et al. [3] 

proposed a fuzzy logic based method to segment MRI into five tissue classes, and 

manually fixed failures of automatic segmentation. Hsu et al. [4] performed 

segmentation using multiple MRI modalities, as well as considering the fat and 
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water image volumes with Dixon MRI sequence. They found that a single MRI 

volume is insufficient to separate all tissue classes. Similarly, Berker et al [5] 

combined UTE/Dixon MRI sequence to segment tissues for AC.

• Atlas-based methods. These methods estimate the attenuation map of a given 

subject by warping the attenuation map of an atlas to this subject [6, 7], using the 

deformation field estimated by registration of the MR images between the atlas and 

the subject. However, the performance of these methods is highly dependent on the 

registration accuracy.

• Learning-based methods. The MR-CT relationship can be learned from a training 

set and then applied to a target MR image for CT image prediction. Since it is not 

easy to learn such relationship from a single modality, Johansson et al. [8] proposed 

to build a Gaussian mixture regression model for learning from multiple modalities, 

i.e., two UTE images and one T2-weighted MR image. The idea of using Gaussian 

mixture model was also adopted by Roy et al. [9] to synthesize CT image from two 

UTE MR images. The same technique was also applied to estimate CT image from 

one MR image [10]. However, the spatial information was disregarded and then the 

quality of estimated CT image was modest, thus often used as the intermediate 

means to facilitate the subsequent registration task.

• Integration of atlas-based and pattern recognition methods. After warping atlases to 

the target image, a local regression model (characterized by both spatial locations 

and image patch intensity) can be built and applied to the target image. For 

example, Hofmann et al. [7] used a Gaussian process regression model. Although 

this type of techniques can produce promising results, their performance still highly 

depends on the accuracy of the deformable registration between the atlas and target 

MR images.

Another closely related research field is image synthesis, which has a similar goal of 

synthesizing one image modality from other modalities, although with different applications. 

Most of such studies fall under the following two categories:

• Learning-based methods. Jog et al. used random forest to reconstruct the high-

resolution T2-weighted MR image from both low-resolution T2-weighted and high-

resolution T1-weighted MR images [11]. A similar technique was also used to 

estimate Fluid Attenuated Inversion Recovery (FLAIR) sequence from T1, T2, and 

PD-weighted MR sequences [12]. The random forests used in these works are 

rather general and simple, which neither used spatial information nor had specific 

enhancements for CT image prediction. In [13], Li et al. used the convolutional 

neural networks to estimate PET image from MR image. However, neural network 

approach suffers from long training time, ranging from days to weeks, and its 

performance highly depends on the successful tuning of many parameters.

• Examplar-based methods. A dominant line of research in this category is the sparse 

representation based methods. First, the target image patch is sparsely represented 

by a set of atlas patches of the same modality. Then, the resulting sparse 

coefficients are used to integrate the corresponding atlas patches of another 
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modality to estimate the desired image patch in that modality for the target subject. 

Roy et al. used this technique to solve multiple problems, i.e., predicting 

magnetization prepared rapid gradient echo sequence from spoiled gradient recalled 

sequence and vice versa [14, 15], as well as predicting FLAIR image from T1- and 

T2-weighted MRI [16]. Ye et al. [17] estimated T2- and diffusion-weighted images 

from T1-weighted MRI, while Iglesias et al. [18] predicted T1-weighted MRI from 

PD-weighted MRI. But one main drawback of these methods is that the prediction 

is often very computationally expensive due to huge optimization needed in the 

testing phase.

In this paper, we will employ an enhanced random forest to specifically tackle the 

problem of estimating CT image from MRI data, with the following contributions:

• Spatial information is effectively incorporated to enhance the CT prediction quality 

through only rigid registration of atlas and subject, instead of deformable 

registration.

• Image features are innovatively crafted with multi-level sensitivity to balance the 

need for achieving some degrees of invariance to image deformation, yet still being 

sensitive to small structural changes. Furthermore, features are extracted at multiple 

resolutions to incorporate information from wider neighborhood and also combine 

both global and local information, thus making the algorithm more robust to 

different image resolutions as well.

• Structured random forest is used to predict a CT image patch as a structured output, 

thus preserving the neighboring structures in the predicted CT image. This cannot 

be achieved by the traditional methods, which often predict individual CT values 

independently.

• A novel ensemble model is proposed to combine the results from multiple decision 

trees in the random forest for improving both robustness and accuracy of CT 

prediction.

• An auto-context model is applied to incorporate the context information in the 

predicted CT image for iterative refinement.

Below, we first describe our method in Section II, and then evaluate it extensively in Section 

III. We finally give discussions and conclusions in Sections IV and V, respectively.

II. Method

A. System Overview

Suppose we have a set of pairs of MR and CT training images. For each pair, the CT image 

is used as the regression target of the MR image. We further assume that the training data 

have been preprocessed by removing noise and uninformative regions (e.g., device tools), 

and have been aligned (see below for details). In the training stage, we first extract multi-

scale features from each MR image and use them together with the corresponding CT image 

to train an initial structured random forest. We then use the resulting forest to predict the CT 

image for each MR image in the training set, leading to an initial set of predictions. Together 
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with the features from MR images, we can further extract context features from the 

predicted CT images to train a new structured random forest and perform prediction again. 

By repeating this process until convergence, we can finally obtain a sequence of trained 

forests. In the testing stage, we extract features from the new (target) MR image and feed 

them into the trained forests for CT image prediction.

B. Intra-subject and Inter-subject Alignment

The intra-subject registration is to align each pair of CT and MR images of the same subject. 

For the brain images, linear registration is sufficient due to small deformation, and thus can 

be achieved by FLIRT [19] with 12 degrees of freedom. As there is often a large 

deformation on soft tissues for the prostate images, we perform intra-subject deformable 
registration with B-Splines (Elastix [20]), using mutual information as a similarity measure. 

Finally, we perform rigid-body inter-subject registration to roughly bring all subjects onto a 

common space.

C. Multi-scale Feature Extraction

1) Feature Types—We use the following four types of features to effectively 

characterize each MR image patch:

• Spatial coordinates (x, y, z): They are the coordinates of the center of an image 

patch in the common space, and are used as features input to the structured random 

forest, to provide the spatial information.

• Pairwise voxel differences: This is a voxel-level feature, which is generated by 

randomly choosing a pair of voxels at different locations within an image patch and 

then computing their intensity difference.

• Haar-like features: This type of features operates on the sub-region level in an 

image patch. It was originally proposed by Viola and Jones [21] for object 

detection, and has been applied to many applications due to its efficiency. Here, we 

use a variant of the Haar-like features calculated based on the difference between 

mean values of two sub-regions within an image patch. The size and position of 

each sub-region can be randomly chosen [22].

• Discrete Cosine Transform (DCT) coefficients: DCT can characterize an image in 

the frequency space, and was successfully applied in image compression [23]. DCT 

coefficients were also proved to be efficient invariant features for image retrieval 

and recognition [24, 25], which can provide some degrees of invariance to image 

deformation in the spatial domain. Here, we can use DCT coefficients of image 

patch as features, which essentially operate on the whole-patch level.

Note that the last three types of features are carefully chosen to characterize information of 

an image patch at different levels, i.e., from voxel level, sub-region level, to whole-patch 
level. Their sensitivities to image changes vary at different levels, i.e., from fine, local, to 

global, respectively. By integrating them into structured random forest for automatic feature 

selection, they help balance the need of not only having some degrees of invariance to image 

deformation but also being sensitive to small structural changes for preserving image details.
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2) Multi-scale Approach—To cover a wider neighborhood and combine both global and 

local characteristics of the image region, we also extract features at multiple resolutions. 

Specifically, each original MR image is down-sampled to obtain its corresponding images at 

coarser scales. Then, we fix the size of the image patch to extract features at corresponding 

positions across all scales. Finally, we group all the extracted features, together with the 

coordinates of the center of the image patch, to form the final feature vector for each 

location in the MR image (see Fig. 2).

D. Structured Random Forest

1) Random Forest—Random forest is a learning-based method for classification and 

regression problems, and has been widely adopted in medical imaging applications [26]. 

Random forest comprises of multiple decision trees. At each internal node of a tree, a feature 

is chosen to split the incoming training samples to maximize the information gain. 

Specifically, let u ∈ U ⊂ ℝq be an input feature vector, and ν ∈ V ⊂ ℝ be its corresponding 

target value for regression. For a given internal node j and a set of samples Sj ⊂ U × V, the 

information gain achieved by choosing the k-th feature to split the samples in the regression 

problem is computed by:

(1)

(2)

(3)

where L and R denote the left and right child nodes, 

, uk is the k-th feature of feature vector u,  is the 

splitting, threshold chosen to maximize the information gain  for the k-th feature uk, and |·| 

is the cardinality of the set. H(S) denotes the variance of all target values in our regression 

problem.

In the training stage, the splitting process is performed recursively until the information gain 

is not significant, or the number of training samples falling into one node is less than a pre-

defined threshold.

2) Structured Random Forest

In the classic random forest, its output is just a target value for our case of regression, i.e., 

predicting voxel-wise CT value by features computed from an MR image patch. Inspired by 

the work of Dollár and Zitnick [27] on deriving the structured output for 2D edge detection, 

we propose here to construct the structured random forest for patch-wise CT prediction, i.e., 

predicting target values in the whole CT patch from its corresponding MR image patch. The 
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difference between structured and classic random forests is illustrated in Fig. 3. There are 
two notable advantages by directly predicting all target values in the whole CT patch, 
compared to the voxel-wise CT value prediction. First, the neighborhood information can be 

preserved in each predicted CT patch, which cannot be achieved by the voxel-wise CT value 

prediction. Second, more target values can be conveyed in the resulting outputs, thus 

reducing the number of decision trees in the random forest and improving the efficiency of 

the entire prediction.

Despite the above advantages, a major problem with patch-wise prediction is how to 

efficiently characterize the similarity of the structured outputs for defining the information 

gain. One naïve solution is to define the similarity of CT patches based on the similarity of 

voxel-wise intensities in the CT patches. However, this approach is computationally 

expensive and also too sensitive to individual voxel changes to capture the high-level image 

patch structure. For example, a small CT patch of size a×a×a can decrease the speed in cubic 

exponent, i.e., a3 times, for each attempt to evaluate the information gain at one node alone. 

It will thus cause significant delay in the training process due to multiple splitting 

evaluations at each node and also the exponential growth of the number of nodes. A more 

effective solution is to find a mapping that can effectively capture the information from each 

image patch, and then compare just the mapping coefficients. Let the regression target set be 

V ⊂ ℝg, where each element ν represents the target values of all voxels in the target CT 

patch. A desired mapping should be able to map ν ∈ V ⊂ ℝg to a new coefficient space ℂ ⊂ 

ℝd:

(4)

such that d < g, and also we can measure the dissimilarity of two CT patches by computing 

the Euclidian distance of their corresponding coefficients in ℂ. In this paper, we characterize 

the image patches by principal component analysis (PCA), i.e., using the first d eigenvectors 

of all CT patches in V as a mapping function and the mapped coefficients of ν in ℂ represent 

the first d PCA coefficients. This mapping is efficient to compute, and also effective in 

deriving the most significant information in each CT patch. Suppose that w = Π(ν) denotes 

the mapped coefficients of ν, where w ∈ ℂ, then H(S) from Eqs. (2) and (3) can be 

computed as:

(5)

(6)

Although we only use the first d PCA coefficients to compute information gain, we do not 

discard the rest coefficients. Instead, we store and use all the coefficients for inverse 

mapping into image patches in the reconstruction phase, thus preserving the quality of 

output image patches. Note that the proposed structured random forest leads to a predicted 
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CT patch at each voxel. We fuse all prediction results (i.e., by averaging) to get the final 

predicted CT image.

3) Ensemble Model

For simplicity, we use the notion of voxel-wise prediction in the classic random forest to 

explain our proposed ensemble model. The similar concept and steps can be directly applied 

to patch-wise prediction in our structured random forest.

Each leaf node of the trees in random forest stores multiple training samples that can be used 

to derive the final prediction result. In the testing stage, feature vector of each MR image 

patch is passed through each tree, and finally reaches one leaf node per decision tree. To 

derive the final prediction for the input MR image patch, we have to combine all information 

stored in those arrived leaf nodes. A common approach is to average all the training samples 

in those arrived leaf nodes across all decision trees. Specifically, let  be the CT value of the 

l-th training sample in the arrived leaf node of decision tree t ∈ T, where l ∈ {1,…,Lt } and 

Lt is the number of training samples in the current arrived leaf node of decision tree t. The 

final prediction result is given by:

(7)

However, this ensemble method is not robust, especially when the variation of the results 

from different decision trees is large. An example is given in Fig. 4, where the forest has 

three decision trees. For the input MR image patch, the arrived leaf nodes in the two 

decision trees (tree 2 and tree 3) contain training samples with their corresponding CT 

values in the intensity range of bone, while the arrived leaf node in the third tree (tree 1) 

contains CT values in the intensity range of air. This is a typical case in our application, 

where, for bone and air, they are ambiguous in the MR image, but highly differentiated in 

the CT image. As predictions of most decision trees (i.e., 2 trees) are bone, the correct 

output value should be similar to bone. However, if using the classic ensemble model in Eq. 

7, the final prediction is μ =1089.7, which is neither bone nor air, and will be misclassified 

into the intensity range of white matter.

To address the above problem, we propose a new ensemble model. Specifically, instead of 

using the mean, we use the median of prediction results, thus guaranteeing the final 

prediction to be either air or bone for the above example in Fig. 4. But, if there are more 

training samples included in the current leaf node of decision tree 1, by taking the median of 

all prediction results from all decision trees, we could get the final result in the intensity 

range of air, which is incorrect since most decision trees have the prediction results in the 

intensity range of bone.

To this end, we use 1) median of medians and 2) median of means to avoid potential bias. 

For the former model, we take the median for results in each decision tree, and then take the 

median again across the obtained medians of all decision trees. For the latter, we compute 

the mean for each tree, and then take the median across the obtained means of all decision 
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trees. Both models ensure the final result to be in the range of the outputs of all decision 

trees, and also favor the contributions from results of most of trees. The difference between 

the two models is that the former provides the output value only from those observed in the 

decision trees, while the latter can infer a new value within the output range of all decision 

trees.

For the above example, the former model leads to a prediction value of 1996, which is an 

existing value belonging to the bone, while the latter gets 1995.7, which is a new value but 

still belonging to the bone.

E. Auto-context Model

It has been known that the context, i.e., the surrounding information with respect to an 

object of interest, plays a vital role in interpreting image content [28]. Similarly, the 

prediction of an image element could be enhanced by the information from its surrounding 

neighbors. Among the methods leveraging context information, auto-context model (ACM) 

[29] has been shown highly effective. ACM uses the prediction result from the learned 

model to characterize the context information, and then uses such information as context 

features, together with the appearance features extracted from the input MR image, to 

recursively train a series of prediction models. Here we integrate ACM into our method, as 

summarized in Framework 1, where Ω is the total number of training MR and CT image 

pairs, Xω represents an MR image while Yω is its corresponding CT image, and  is the 

predicted CT map corresponding to the input MR image Xω at iteration ϕ.

Framework 1

Training procedure with integrated auto-context model

For each training MR image Xω, initialize its predicted CT map  with zeros on all the voxels. For ϕ = 1,…Φ:

•
Prepare a training set .

• Train the structured random forest using the features extracted from both input MR image Xω and the 

predicted CT map .

•
Use the trained structured random forest to compute a new CT map , which is the predicted CT image 
for each corresponding training MR image Xω.

In the initial stage, as there is no context information derived yet, the CT maps  are 

initialized to zeros. It has been proven that ACM monotonically decreases the training error 

in each stage [29]. Thus, the prediction result is expected to converge after a number of 

iterations in Framework 1.

In the testing stage, to predict the CT image, the new given MR image follows the same 

sequence of models as learned during the training stage, to generate the final prediction.

Huynh et al. Page 9

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



III. Experiments

A. Datasets

We tested our algorithm on two datasets, as described below:

1. The brain dataset was acquired from 16 subjects with both MRI and CT scans in 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (see www.adni-

info.org for details). CT images were acquired on a Siemens Somatom scanner, 

with voxel size 0.59×0.59×3 mm3; The MR images were acquired using a Siemens 

Triotim scanner, with voxel size 1.2×1.2×1 mm3, TE 2.95 ms, TR 2300 ms, and flip 

angle 9°.

2. The prostate dataset is our in-house data, which has 22 subjects, each with the 

corresponding MR and CT scans. CT images (voxel size 1.17×1.17×1 mm3) were 

acquired on a Philips scanner, while MR images (voxel size 1×1×1 mm3, TE 123 

ms, TR 2000 ms, and flip angle 150°) were acquired using a Siemens Avanto 

scanner. The preprocessing and alignment process of the data is presented in 

Section II.B, in which the Dice Similarity Coefficients (DSC) for prostate, bladder 

and rectum after intra-subject deformable registration are 0.91, 0.95, and 0.92, 

respectively.

We performed leave-one-out cross validation on each dataset. In all experiments throughout 

this paper, if not mentioned specifically, the following parameters were used:

• Input patch size in MR image: 15×15×15.

• Output patch size in CT image: 3×3×3.

• Number of PCA coefficients used in the structured random forest: 10.

• Number of DCT coefficients extracted in each input MR image patch = Number of 

Haar-like features = Number of pairwise voxel difference features = 200.

• Feature length: (3 spatial coordinates) + (200 pairwise voxel difference features 

+ 200 Haar-like features + 200 DCT coefficients) x (3 image scales) = 1803.

• Number of trees: 20; Maximum tree depth: 19; Minimum number of training 

samples at each leaf node: 5.

B. Quantitative Measurements

To quantitatively characterize the prediction accuracy, we used two popular metrics: 1) mean 

absolute error (MAE) and 2) peak signal-to-noise ratio (PSNR):

(8)

where E is the ground truth CT image, Ê is the corresponding estimated CT image, Q is the 

maximal intensity value of E and Ê, and C is the number of voxels in the image. In general, 

a good prediction result has lower MAE and higher PSNR.
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C. Comparison between Classic Random Forest and the Proposed Random Forest

We first compare our method with the classic random forest. In Section II.D, we introduced 

two enhancements over the classic random forest, i.e., structured random forest and new 

ensemble models. For the new ensemble models, the median of medians and median of 
means are similar and thus expected to give similar results. Hence, we chose to use the 

median of means for the experiment due to its computational efficiency. By alternatively 

integrating these enhancements with the traditional approach, we have four variants of 

random forest: classic random forest with mean ensemble model (C-M), structured random 

forest with mean ensemble model (S-M), classic random forest with median of means 
ensemble model (C-MM), and structured random forest with median of means ensemble 

model (S-MM).

Fig. 5 provides detailed visual comparison for all four variants. The results are rather 

consistent across the two datasets. We can see that the structured random forest can better 

preserve the continuity, coalition and smoothness in the prediction results, since it uses local 

neighborhood constraint in the image patch, as discussed in Section II.D.2). This is observed 

from the comparison between C-M and S-M, and also between C-MM and S-MM. Besides, 

the effects of different ensemble models can be clearly seen by differences between the 

results from C-M and C-MM, and also between results from S-M and S-MM. The median of 
means model always provides cleaner and less noisy results compared to the traditional 

mean model, indicating that the latter is more prone to generating the odd result which does 

not exist in the outputs of the trained trees, as discussed in Section II.D.3).

Tables 1–2 further demonstrate the above observations quantitatively. As the results from 

different variants differ mainly in the soft tissue regions (especially in the regions close to 

the bone, as seen in Fig. 5), we only provide results within such region. Tables 1–2 clearly 

show the consistent improvement of the structured random forest over the classic random 

forest (S-M vs. C-M, and S-MM vs. C-MM), and the improvement of the median of means 
ensemble model compared to the traditional mean model (C-MM vs. C-M, and S-MM vs. S-

M). To further show the statistical significance of the improvement, we performed the null 

hypothesis tests using obtained results. The resulting p-values in both datasets are well 

below 0.05.

D. Contribution and Convergence of Auto-context Model

We now show the contribution of ACM and its convergence. As shown in Fig. 6, the 

prediction quality improves notably with the use of context information by comparing Fig. 

6b and Fig. 6c. The subsequent iterations (Fig. 6d) keep improving the quality with the 

refined context information, though it may be less noticeable. This can also be seen from the 

quantitative results given in Fig. 7, where both MAE and PSNR are improved gradually and 

consistently with iterations, in both datasets. The ACM still produces an improved 

prediction in the final iteration, though not as significantly as it does in the first two 

iterations. The statistical tests show that the p-values after each iteration are well below 0.05. 

We stopped at the third iteration, since the improvement is minor after this iteration 

(PSNR<0.1).
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E. Comparison with Atlas-based and Sparse Representation based Methods

In this section, we compare our method with two popular approaches: an atlas-based method 

and a sparse representation based method. While there are many variants of atlas-based [6, 7, 

16, 30] and sparse representation based methods [14–16, 18], we only chose one standard 

implementation for each approach for demonstration purpose:

• Atlas-based method: An atlas has an MR image and its corresponding CT image. 

To predict the CT image for a target MR image, the MR image of each atlas is first 

aligned [31] onto the target MR image, and the resulting deformation field is used 

to warp the CT image of each atlas. Averaging the resulting warped CT images 

leads to the final prediction.

• Sparse representation based method: After warping the atlases to the target 

image space, a local sparse representation is then performed. Specifically, a local 

patch in the target MR image is represented as a sparse linear combination of 

neighboring patches from the warped atlas MR images, similar to [32]. The 

resulting sparse coefficients are then applied to the warped atlas CT images to 

obtain the final prediction.

The training time for our method took ~ 4 hours on 2.67GHz Intel Xeon 6-core processor, 

while the testing time took ~ 20 minutes. The typical prediction results are given in Fig. 8. It 

can be seen that the CT images generated by our method are quite similar to ground truth in 

both datasets. Furthermore, our method outperforms other two methods, with higher 

similarity in shape and lower difference values. The atlas-based method often leads to 

blurred prediction due to simple averaging of the warped atlases. This can be clearly seen on 

the prostate dataset, which has large shape variation across different subjects. Although the 

sparse representation based method works better than the atlas-based method, its prediction 

is still noisy.

Quantitative results in Tables 3–4 show that our method outperforms other two methods in 

terms of MAE and PSNR. For the brain dataset, our method gives an average PSNR of 26.3, 

significantly better than 21.1 and 20.9 given by the sparse representation based method and 

the atlas-based method, respectively. A similar result can also be seen on the prostate 

dataset, with the average PSNR of 32.1, 30.4 and 29.1 for the three methods, respectively. 

The hypothesis tests between our method and the other two methods led to p-values well 

below 0.05, showing the statistical significance in the improvement.

To further evaluate the accuracy of the predicted CT range, we also perform tissue-wise 

voxel classification test based on known CT ranges for different tissue types, i.e., bone, air, 

fat, muscle, and soft tissues in head region. Results are shown in Fig. 9 and Table 5. We can 

see that most misclassifications are around the tissue boundary, and the proposed method 

clearly outperforms other two methods, especially in brain data, with the mean accuracy of 

0.91, compared to 0.84 and 0.82 by the sparse representation and atlas-based methods, 

respectively.
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IV. DISCUSSIONS

We have presented a learning-based approach to predicting the CT image from a single MR 

image. To the best of our knowledge, this is the first work that uses a structured random 

forest based framework for this task. Several mechanisms are also incorporated to boost the 

prediction performance. We tested the proposed system on the two challenging datasets and 

compared its performance with two state-of-the art approaches.

The efficacy of using structured random forest is demonstrated through Fig. 5 and Tables 1–

2. The results show that the structured random forest can generally improve the prediction 

performance, qualitatively and quantitatively. In particular, it can better preserve the 

continuity, coalition and smoothness in the predicted results, since more local neighborhood 

information is leveraged and preserved in the estimated CT image.

Fig. 5 and Tables 1–2 also validate the efficacy of the proposed ensemble model using the 

median of means approach. The new model notably reduces noisy predictions compared to 

the traditional mean model. This is because the mean model simply averages the outputs of 

the trees, which is more likely to render the final result different from the outputs of the 

trained trees, especially when the outputs of different trees vary dramatically.

Context information does help improve the prediction accuracy remarkably, as shown in Fig. 

6 and Fig. 7, where the prediction is gradually improved at each iteration of the auto-context 

model. One last remark of the proposed method is on the efficacy of the constructed 

features. The spatial information is efficiently incorporated and learned to improve the 

prediction performance. Note that such information is only obtained from rigid registration 

other than deformable registration (which is often required by most of the existing methods). 

The choice of features with multi-level sensitivity makes the prediction results more robust 

and accurate. As shown in Fig. 8, our system can predict the CT images that are highly 

similar to the ground-truth values and can effectively capture very small changes in the 

image.

Our method works remarkably better than the sparse representation based method and the 

atlas-based methods, as shown in Fig. 8 and Tables 3–4. For the brain dataset, our method 

consistently outperforms both methods, while, for the prostate dataset, we achieve the best 

overall performance, although the sparse representation based method works better 

occasionally for some subjects. This might be due to the large deformations of the prostate 

data across subjects, which cause difficulty in generalizing the pattern rules. Despite this, 

our method still achieves better overall performance by using only the rough spatial 

information derived from rigid-body alignment, compared to the deformable registration 

used in the presented sparse representation based method. The efficacy of our method is 

further consolidated by the tissue-wise voxel classification results presented in Fig. 9 and 

Table 5. Our method clearly provides better classification of tissue types of voxels compared 

to other two methods.

To evaluate the practical value of our method, we have also conducted a preliminary study 

by using our synthesized CT images for dose planning in the prostate radiation therapy. 

Specifically, we chose several typical patients from 22 patients. We respectively used their 
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real CT images and the synthetic CT images from our method for dose calculation in the 

radiotherapy planning. Since physicians care more about regions around the prostate, our 

method is applied to predict Hounsfield units within those regions. All dose calculations are 

based on the sub-regions. Fig. 10 shows the differential dose-volume histograms of one 

patient obtained by real CT image (red) and our synthetic CT image (blue). We can see that 

two histograms overlap quite well, indicating that the prostate has similar dosimetric 

coverage when the same treatment beams are calculated on real CT image or synthetic CT 

image. Quantitatively, the mean doses on the prostate obtained by real and synthetic CT 

images are 7389.92 cGy and 7393.85 cGy, respectively. The prescription of radiotherapy 

plan of this case is 7000 cGy on the prostate and allows 10% dose variation. Accordingly, 

the mean dose obtained with our synthetic CT is clinically acceptable. In our future work, 

we will evaluate on more patients in prostate radiation therapy, as well as extend our 

evaluation to PET attenuation correction.

V. Conclusion

In this paper, we propose a novel approach to predicting a CT image from a single MR 

image. The proposed method is based on random forest with multiple improvements, to 

effectively capture the relationship between the CT and MR images. Specifically, image 

information is better characterized by introducing spatial information to the crafted feature. 

The context and neighborhood information are also well preserved by using the structured 

random forest and the auto-context model, with the final result further improved by the new 

ensemble model. The proposed method is capable of reliably predicting the CT image from 

the MR image for different organs of human body. Specifically, we tested our method on 

two challenging and highly different datasets, with the results better than two state-of-the-art 

methods.

For future work, we will further investigate the influence of different parameters in our 

method, and extend it to work on more datasets. The clinical application of the proposed 

method such as for AC in PET/MRI scanner is also of high interest for further investigation.
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Fig. 1. 
A pair of corresponding MR and CT images from the same human brain. Both air and bone 

have very low responses in MR image, but they are highly differentiable in CT image.
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Fig. 2. 
Multi-scale feature extraction. At each location, the feature vector is comprised of the spatial 

coordinates of the location and also the features extracted from an image patch centered at 

that location with fixed size across all scales.
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Fig. 3. 
Illustration of classic random forest and structured random forest. The top row shows an MR 

image patch, used to predict a corresponding CT value ν or a CT patch ν (shown in the 

bottom row). In the classic random forest, the input feature vector derived from MR image 

patch is used to predict a target value ν for a voxel (red point) in the CT image, while, in the 

structured random forest, the same input feature vector u is used to predict all values ν in a 

target CT patch (marked by the red rectangle).
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Fig. 4. 
An example of the output results from 3 different decision trees in the random forest.
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Fig. 5. 
Qualitative comparison of the prediction results from different variants of random forest for 

two datasets: 1) brain (upper panel) and 2) prostate (lower panel). In each panel, from left to 

right, the top row shows the prediction results using classic random forest with the mean 

ensemble model (C-M), structured random forest with the mean ensemble model (S-M), 

classic random forest with the median of means ensemble model (C-MM), structured 

random forest with the median of means ensemble model (S-MM), and the CT ground truth; 

The bottom row shows the close-ups of the regions indicated by red rectangles in the top 

row.
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Fig. 6. 
Contribution of auto-context model. Top: results for the brain dataset. Bottom: results for the 

prostate dataset.
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Fig. 7. 
Mean and standard deviation of MAE and PSNR measurements at different iterations of 

auto-context models in two datasets (left two: brain, right two: prostate). Both MAE and 

PSNR are measured in the entire image domain.
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Fig. 8. 
Examples of the prediction results from two datasets: 1) brain (upper panel) and 2) prostate 

(lower panel). In each panel, from left to right, the top row shows the MR image, ground-

truth CT image, and the predicted CT images given by our method, the sparse representation 

(SR) based method, and the atlas-based method, respectively; The bottom row shows the 

residual images by subtracting the ground-truth CT image from the prediction results given 

by our method, the sparse representation (SR) based method, and the atlas-based method, 

respectively.
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Fig. 9. 
Tissue-wise voxel misclassification maps for two datasets. Red denotes false negative, while 

blue denotes false positive.
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Fig. 10. 
Differential Dose-Volume Histograms (DVHs) of the prostate with real CT image (red) and 

our synthetic CT image (blue) for a typical patient.
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Table 1

Quantitative comparison of the prediction results from 4 different variants of random forest on the soft tissue 

regions of the brain dataset, in terms of MAE and PSNR.

MAE Mean±s.d. Med. 10th-tile 90th-tile

C-M 36.3±9.8 37.0 20.0 49.2

S-M 33.5±9.0 34.7 18.8 45.3

C-MM 22.5±6.5 21.6 12.9 30.9

S-MM 21.4±6.3 20.6 12.0 30.0

PSNR Mean±s.d. Med. 10th-tile 90th-tile

C-M 22.0 ± 2.1 21.7 19.9 26.0

S-M 22.7 ± 2.1 22.6 20.5 26.7

C-MM 23.6 ± 2.3 23.6 21.0 27.7

S-MM 24.4 ± 2.2 24.9 21.6 28.4
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Table 2

Quantitative comparison of the prediction results from different variants of random forest on the soft tissue 

regions of the prostate dataset, in terms of MAE and PSNR.

MAE Mean±s.d. Med. 10th-tile 90th-tile

C-M 45.9±6.7 45.4 37.4 53.9

S-M 38.3±5.6 37.6 31.6 45.1

C-MM 35.4±3.6 35.4 30.9 40.1

S-MM 31.8±4.5 31.7 25.3 37.8

PSNR Mean±s.d. Med. 10th-tile 90th-tile

C-M 28.2±0.5 28.3 27.3 28.8

S-M 28.7±0.6 28.8 27.9 29.4

C-MM 28.8±0.5 28.9 28.2 29.3

S-MM 29.1±0.6 29.3 28.3 29.7

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Huynh et al. Page 29

Table 3

Quantitative comparison of our method with the atlas-based method and the sparse representation (SR) based 

method on the brain dataset, in terms of MAE and PSNR.

MAE Mean±s.d. Med. 10th-tile 90th-tile

Atlas 169.5±35.7 169.9 130.1 222.3

SR 166.3±37.6 164.3 126.5 222.0

Proposed 99.9±14.2 97.6 83.8 118.8

PSNR Mean±s.d. Med. 10th-tile 90th-tile

Atlas 20.9±1.6 20.5 19.3 22.6

SR 21.1±1.7 21.1 19.4 23.0

Proposed 26.3±1.4 26.3 24.5 28.2
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Table 4

Quantitative comparison of our method with the atlas-based method and the sparse representation (SR) based 

method on the prostate dataset, in terms of MAE and PSNR.

MAE Mean±s.d. Med. 10th-tile 90th-tile

Atlas 64.6±6.6 65.9 56.8 71.5

SR 54.3±10.0 54.0 44.3 61.7

Proposed 48.1±4.6 48.3 42.2 53.6

PSNR Mean±s.d. Med. 10th-tile 90th-tile

Atlas 29.1±2.0 29.8 25.8 30.7

SR 30.4±2.6 31.3 26.7 32.9

Proposed 32.1±0.9 31.8 31.1 33.4
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Table 5

Mean accuracy of tissue-wise voxel classification.

Proposed SR Atlas

Brain 0.91 0.84 0.82

Prostate 0.79 0.74 0.60

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 January 01.


